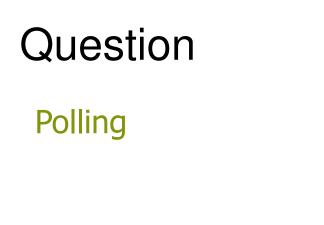
An introduction to **3D printing (Additive Manufacturing)** in Engineering

Lecturer: Reza Hedayati, PhD


Department of Aerospace Structures and Materials (ASM) Faculty of Aerospace Engineering Delft University of Technology (TU Delft)

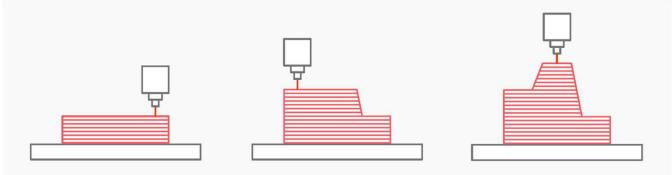
1

Introduction: What is Additive Manufacturing (AM)?

- How many of you know what is additive manufacturing?
- How many of you have previous experience with additive manufacturing?
- How many see themselves working with additive manufacturing in near future?

Additive manufacturing is the 'process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies'

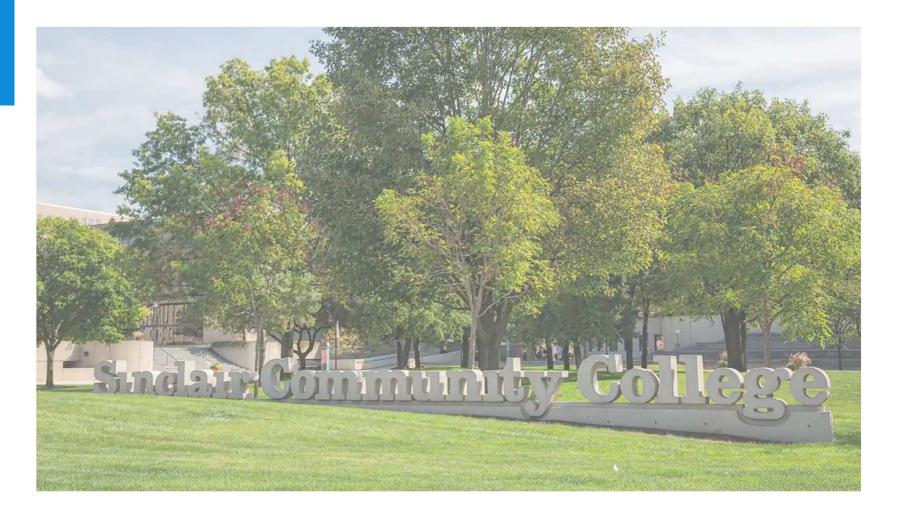
ASTM F2792 - 10



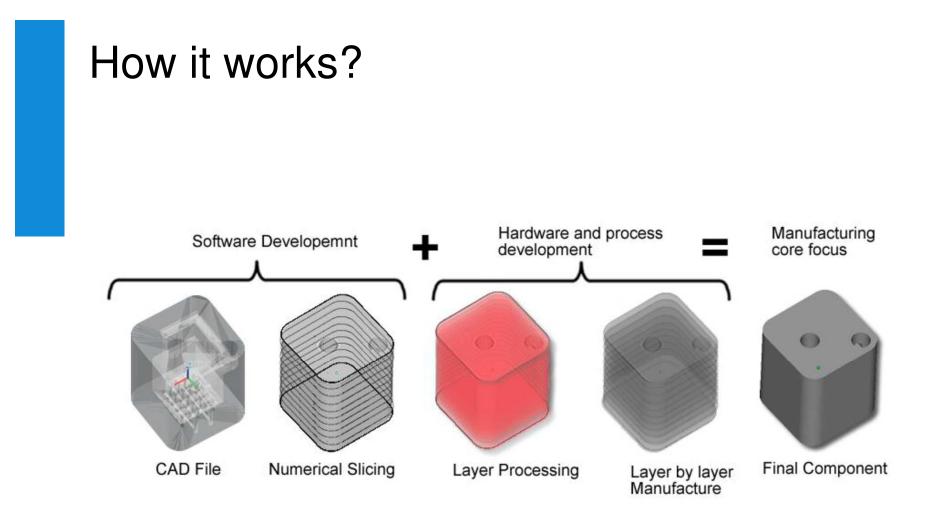
Subtractive vs Additive manufacturing

Subtractive manufacturing (removing material by milling)

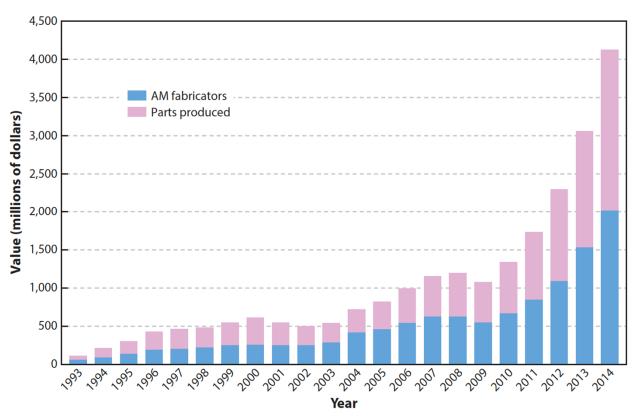
Additive manufacturing



Deposition mostly in the form of filament, powder, and resin


(https://www.3dhubs.com/knowledge-base/3d-printing-vs-cnc-machining)

Subtractive vs Additive manufacturing


https://www.youtube.com/watch?v=zhSIMnW4Rd0

(Sidambe, 2014)

Rise of additive manufacturing in 2000s

2014: the value of production industry and parts produced was over \$4.2 B

Growth of AM worldwide from 1993 to 2014 in terms of the value of AM fabricators (lower bars) and parts produced (upper bars).

(Bourell, 2016)

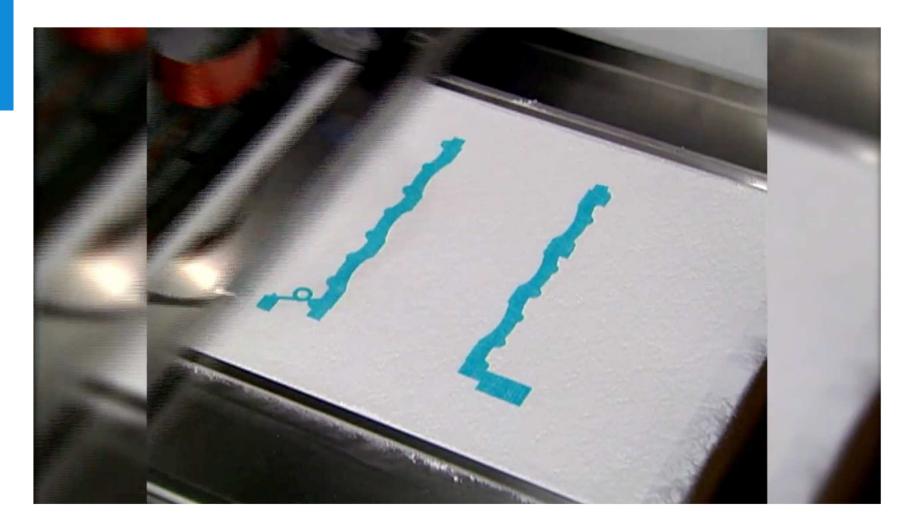
Reza Hedayati, PhD - rezahedayati@gmail.com

TUDelft

Open-ended question

• Why is there a growing rise in additive manufacturing?

Rise of additive manufacturing in 2000s


- Many relevant patents are expired
- Widespread use of CAD/CAM programs in academia/industry
- Increase in the library of printable materials

Overview and advantages of AM techniques

Overview of AM techniques

https://www.youtube.com/watch?v=Ev-MM9cGKiQ

Overview of AM techniques

Material extrusion	FDM, FFF	An object is built by selectively depositing melted material in a pre-determined path layer-by-layer.
Photopolymerization	SLA	An object is created by selectively curing a polymer resin layer-by-layer using an ultraviolet (UV) laser beam
Powder bed fusion	SLS, SLM	A laser selectively sinters the particles of a polymer/metal/ceramic powder, fusing them together and building a part layer-by-layer.
Binder jetting	3DP	A binder is selectively deposited onto the powder bed
Material jetting	Objet	a printhead dispenses droplets of a photosensitive material that solidifies under ultraviolet (UV) light
Direct energy deposition	LENS	Focused thermal energy is used to fuse powder bed selectively
Sheet lamination	LOM	Sheets are cut selectively and then bond together to form an object

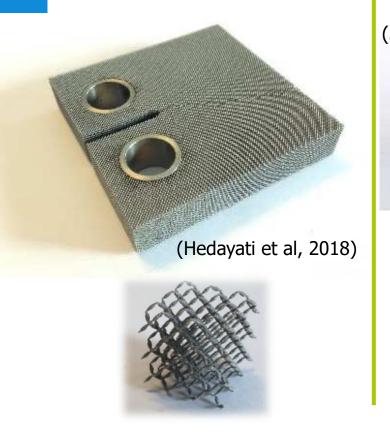
TUDelft

(3dhubs.com)

Advantages of Additive manufacturing

- It is easy to change or revise versions of a product
- Reduction of waste production
- Possibility of fast production of a replacement part
- Some shape are only possible to manufacture using AM

Think-pair-share


Try to think of some examples of geometries that are only possible to be made using AM

3 min

Advantages of Additive manufacturing

An example: Rationally-designed porous materials

Applications:

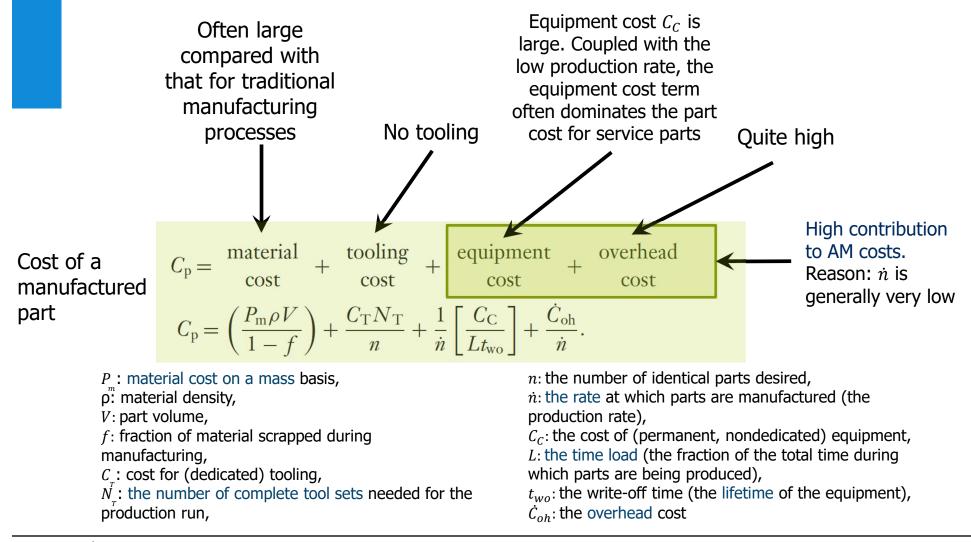
Biomedical implants

Aerospace

Chemical filtering

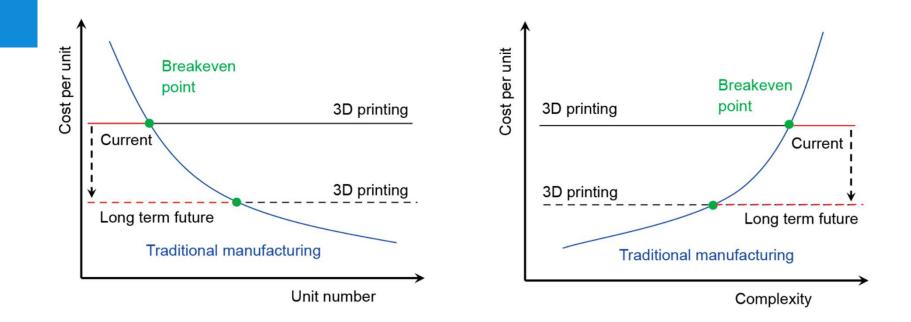
TUDelft

Another example: Porsche metal exhaust



(https://lightweightingworld.com/automotive-applications-embracing-metal-additive-manufacturing/)

Costs of AM technologies


Conventional vs Additive manufacturing

TUDelft

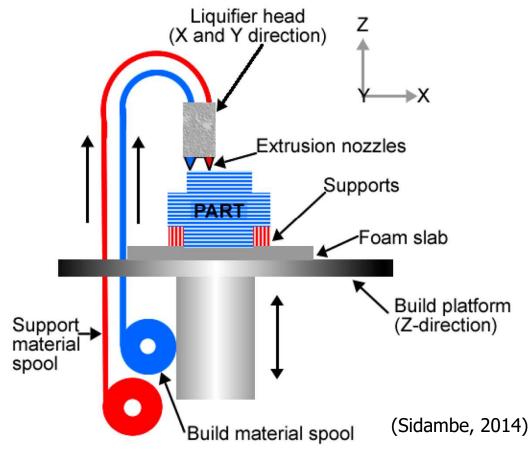
(Bourell, 2016)

Cost of conventional vs Additive manufacturing

AM is the optimum option for low production number and highly complex geometries

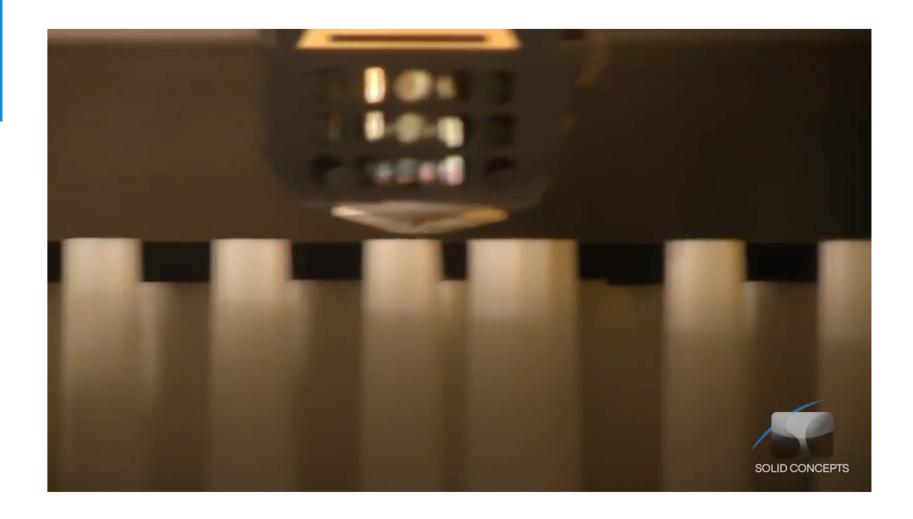
(Ma et al. 2018)

Reza Hedayati, PhD – rezahedayati@gmail.com


TUDelft

Extrusion processes

Fused deposition modeling (FDM)


An object is built by selectively depositing melted material in a pre-determined path layer-by-layer. The materials used are thermoplastic polymers and come in a filament form.

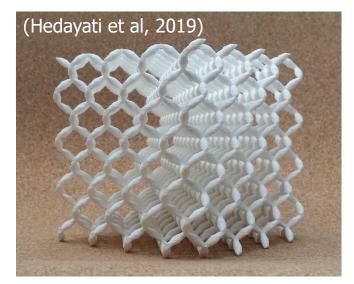
(Varotsis, 2018)

Fused deposition modeling (FDM)

https://www.youtube.com/watch?v=WHO6G67GJbM&t=41s

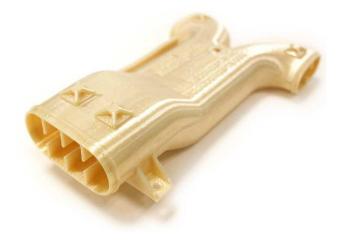
Fused deposition modeling - Clones

Makerbot 5th Gen


Zotrax M300

Ultimaker 3

Cube 3 (3D Systems)



Fused deposition modeling (FDM)

Pentamode metamaterial

(makepartsfast.com)

Aircraft duct

Example of parts additively manufactured by FDM technology

Materials for FDM

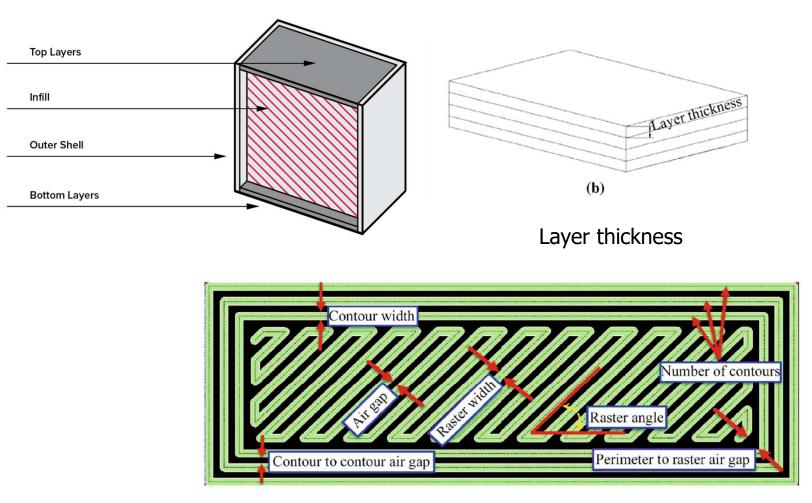

- PLA (PolyLactic Acid)
- ABS (Acrylonitrile butadiene styrene)
- Nylon
- PC (Polycarbonate Thermoplastic)
- ASA (Acrylic Styrene Acrylonitrile)

	Image	Description	Colors Available	Tensile Strength	Tensile Modulus	Tensile Elongation
ABS-M30 Datasheet		Strong, functional, smooth parts with good feature detail		5,200 psi (36 MPa)	350,000 psi (2,400 MPa)	4%
ABS- ESD7 Datasheet		Strong thermoplastic with static dissipative properties	•	5,200 psi (36 MPa)	350,000 psi (2,400 MPa)	3%
ABSi Datasheet		Superior strength; translucent in nature.	TOO	5,400 psi (37 MPa)	277,700 psi (1,920 MPa)	4.4%
ABS- M30i Datasheet		Bio-compatible (ISO 10993; USP Class VI), Gamma & EtO sterilizable ABS material for medical and pharmaceutical		5,200 psi (36 MPa)	350,000 psi (2,400 MPa)	4%
ASA Datasheet	NOW ARLE	Production-grade thermoplastic; UV-stable and color-fast; especially suited for outdoor commercial and infrastructure end-use parts	•	Ultimate (XY): 4,720 psi (33 MPa) Ultimate (Z): 4,300 psi (30 MPa)	(XY): 291,000 psi (2,010 MPa) (Z): 283,000 psi (1,950 MPa)	Break (XY): 9% Break (Z): 3%
PC Datasheet		Accurate, durable, strong, stable; suitable for functional testing; imaging & RF transparent		9,800 psi (68 MPa)	330,000 psi (2,300 MPa)	5%
PC-ISO Datasheet		Bio-compatible (ISO 10993; USP Class VI), Gamma & EtO sterilizable, imaging & RF transparent, strong and rigid material		8,300 psi (57 MPa)	289,800 psi (2,000 MPa)	4%
PC-ABS Datasheet		Superior strength, heat resistance, flexibility; widely used	٠	5,900 psi (41 MPa)	278,000 psi (1,900 MPa)	6%
ULTEM 9085 Datasheet		Flame retardant (FAR 25.853; UL 94 V-0) high- performance thermoplastic	•	10,400 psi (71.6 MPa)	322,000 psi (2,200 MPa)	6%
Nylon 12 Datasheet	NUM	With higher elongation at break and good impact strength, Nylon 12 is the "toughest" FDM material	٠	7,700 psi (53 MPa)	190,000 psi (1,310 MPa)	9.5%

Stratasys materials for FDM

TUDelft

Discretization and toolpath effects

FDM tool path parameters

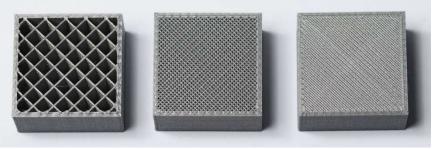
(Cain, 2019); (Mohammed et al, 2015)

FDM parameters – Support structure

Rule of thumb: use support for bridging wider than 5 mm

Support structures for letters Y, H, and T

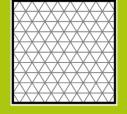
There is a lot of sagging due to lack of support structures


Downside of support structures

FDM parameters – Infill percentage

75%

20%

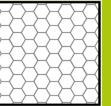

 For prototypes in which shape/form is important, default 20% infill is sufficient

 If the part is to experience mechanical load, higher infill percentages are required

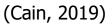
Rectangular

- Standard infill
- Strength in all directions and reasonably fast
 - Least amount of bridging.

TUDelft


Triangular

- When strength is needed in the direction of the walls.
- Take a little longer to print.


Wiggle

- Allows the model to be soft, to twist, or to compress.
- Good choice with a soft rubbery material or softer nylon.

Honeycomb

- Quick to print
- Very strong, providing strength in all directions.

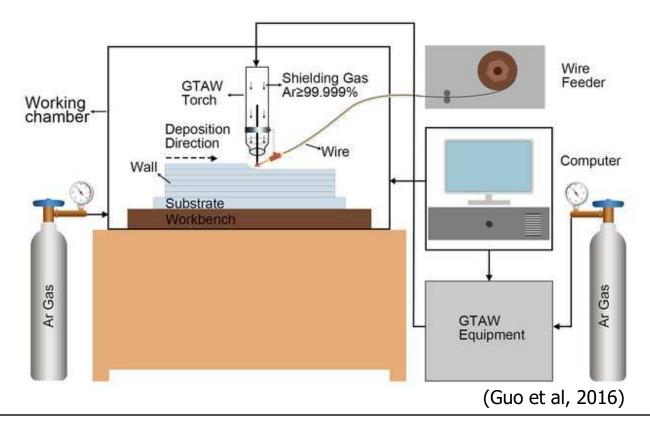
FDM parameters – Shell thickness

- Increasing shell thickness increases strength without having to increase the amount of material used for infill.
- Increasing shell thickness is often necessary if post-processing methods such as sanding or chemical smoothing are required as they reduce the thickness of the surface.
- Any increase in the number of shells also increase the amount of time and material (increasing overall cost)
- Shells typically consist of a specified number of nozzle diameters. It is always good to design shells to be a multiple of nozzle diameter to prevent voids.

Multiple nozzlediameter thickness 2 nozzle-diameter thickness

(Cain, 2019)

Laser deposition technology (LDT)



https://www.youtube.com/watch?v=d2foaRi4nxM&t=119s

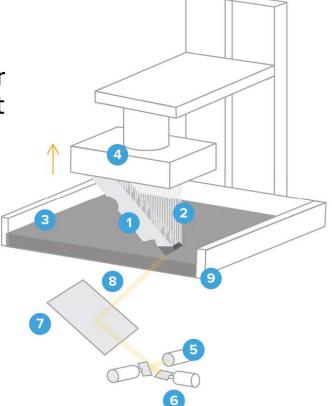
Wire + ARC Additive manufacturing (WAAM)

- Combination of an electric arc as heat source and wire as feedstock
- Potential to fabricate large metal components with low cost and short production lead time

TUDelft

Wire + ARC Additive manufacturing (WAAM)

Wire Arc Additive Manufacturing with Robot


https://www.youtube.com/watch?v=aktUXbCVg/

Photopolymerization

Stereolithography (SLA)

An object is created by selectively curing a polymer resin layer-by-layer using an ultraviolet (UV) laser beam

Upside-Down (Inverted) SLA

(Formlabs, 2018)

(Varotsis, 2018)

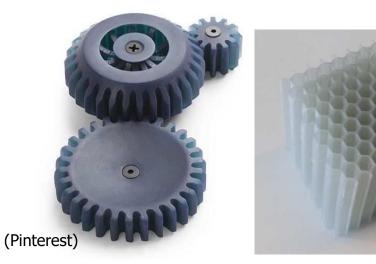
Reza Hedayati, PhD – rezahedayati@gmail.com

TUDelft

The Ultimate Guide to Stereolithography

How SLA Works

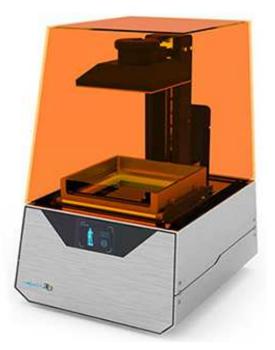
formlabs 😿



Watch online 🕨

https://www.youtube.com/watch?v=8a2xNaAkvLo

Stereolithography (SLA)


Examples of parts manufactured by SLA technique.

Stereolithography - Clones

Formlabs

Dazz 3D

FDM vs SLA

Materials

	FDM	SLA
Material types	PLA, ABS, PC, Nylon, ASA Exchangeable between different printers	Each company produces resins of its own. Resins usually not exchangeable between different printers
Colors	A large range of options	Limited (for example, Formlabs only provides black, white, grey and clear)
Use of material		There are options of choosing more durable or highly specialized materials for industrial or medical use

(Grieser, 2018)

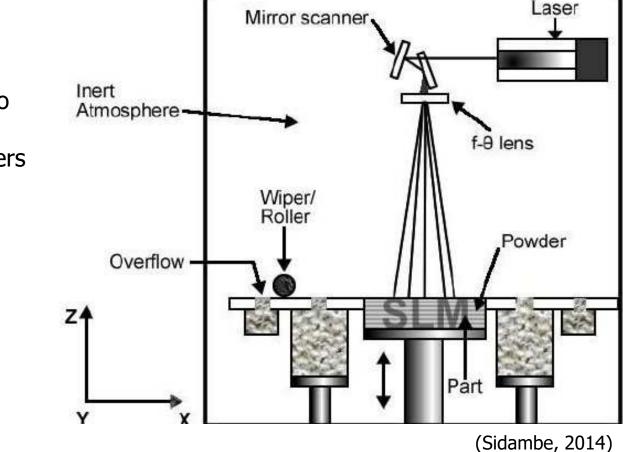
TUDelft

FDM vs SLA

Smoothness

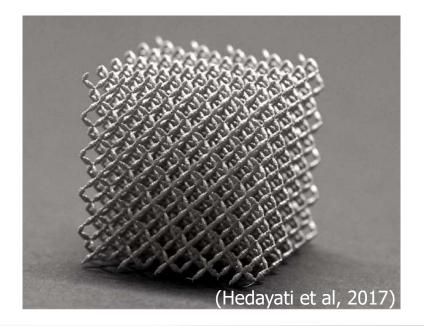
	FDM	SLA		
Factors influencing resolution	 Nozzle size Precision of XY movement of nozzle Precision of Z movement of build plate Weight of upper layers might squeeze the lower layers 	 Optical spot size either of the laser or the projector (which is very small) Low force is applied on the model 		
Result	Relatively rough surface finish	Much smoother surface finish		

(Grieser, 2018)


 Does anyone have any interesting experience with AM (particularly FDM and SLA) they want to share with class?

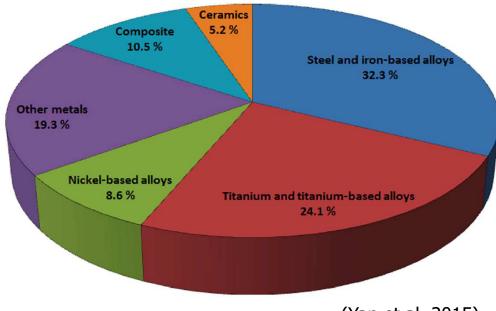
Powder bed fusion

A high powerdensity laser to melt and fuse metallic powders together


TUDelft

Watch online 🕨

https://www.youtube.com/watch?v=da5IsmZZ-tw


Examples of parts manufactured by powder bed fusion technologies: (a) pentamode metamaterial, and (b) topology-optimized airfoil.

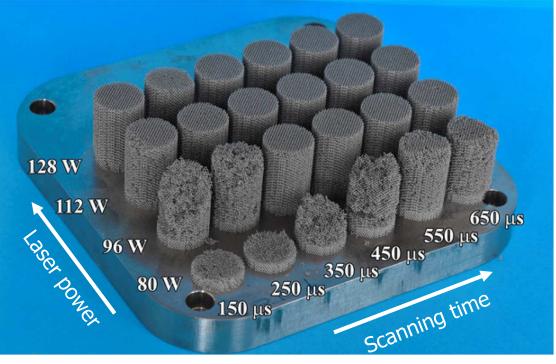
Materials

Usually metals

- copper,
- aluminum,
- stainless steel,
- tool steel,
- cobalt chrome,
- titanium and
- Tungsten
- Ceramics

(Yap et al, 2015)

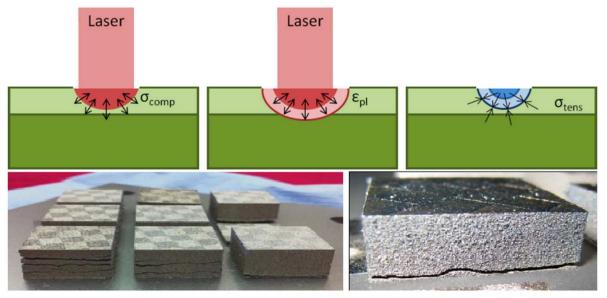
Reza Hedayati, PhD – rezahedayati@gmail.com


TUDelft

Critical process parameters

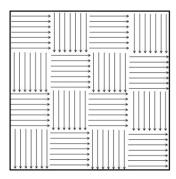
- Laser power
- Scanning speed
- Patterning technique
- Powder size
- Layer height

TUDelft


• Powder bed uniformity

(Ahmadi et al., 2017)

Thermal fluctuations


Temperature gradient creates residual stress. This can lead to crack formation and delamination of parts.

(Yap et al, 2015)

Solutions to residual stress resulting from thermal fluctuations

- **Heat treatment:** The part is heated in a muffle furnace and is kept at the temperature for some time (for example one hour) to relieve stress.
- **Rescanning of laser:** Residual stress may be relieved by heating the newly formed part. To heat the top surface, a laser scan process with the same laser beam as forming is carried out after making each layer.
- Heating of powder bed: A higher cooling speed may cause a larger residual stress. To reduce the cooling speed in SLM process, the powder bed temperature is raised by heating the base plate.
- **Sectoral scanning**: This strategy breaks down a layer into small square grids and neighboring grids are scanned perpendicular to one another

(Sing et al, 2016)

Sectoral scanning

(Shiomi et al, 2004)

Heat treatment

- SLM Ti6Al4V parts show out-of-equilibrium fine acicular martensitic structure ($\dot{\alpha}$ phase) due to high solidification rate.
- 2-hour heat treatment of Ti-6Al-4V parts transforms the fine martensitic structure into a mixture of α and β phases where α phase is present as needles.
- Changing the microstructure of Ti-6Al-4V from α' phase to equiaxed $\alpha + \beta$ increases the static and fatigue strengths and leads to higher ductility.

(Huang et al, 2015)

Heat treatment

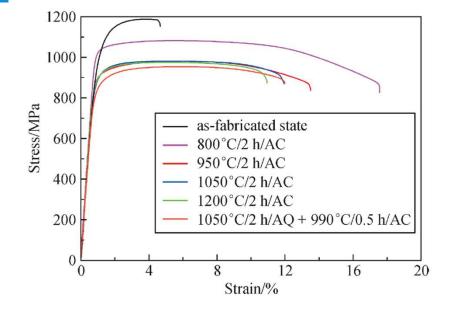


Table: Mechanical properties of SLM Ti-6Al-4V after different heat treatment strategies

No.	$T /^{\circ}$	<i>t</i> /h	Cooling	UTS /MPa	YS /MPa	BE /%
	С		mode			
1				1191±6	970±6	5.37±1.39
2	800	2	AC	1073±9	1010 ± 11	17.05 ± 1.14
3	950	2	AC	984±5	893±3	14.15±1.49
4	1050	1	AC	988±8	869±4	13.34±0.67
5	1200	1	AC	988±8	878±7	11.25±1.25
6	1050	1	WQ			
	followed by		962±12	838±6	11.96±0.07	
	990	0.5	AC			

Note: Treatment one (No.1) is noted for the un-heat-treated as-fabricated material; WQ = water quenching; AC = air cooling; UTS = ultimate tensile strength; YS = yield strength; BE = breaking elongation.

TUDelft

(Huang et al, 2015)

Think-pair-share

 Regardless of material, can you think of some geometries which can only be manufactured by some of the techniques FDM, SLM, and SLA and not with others?

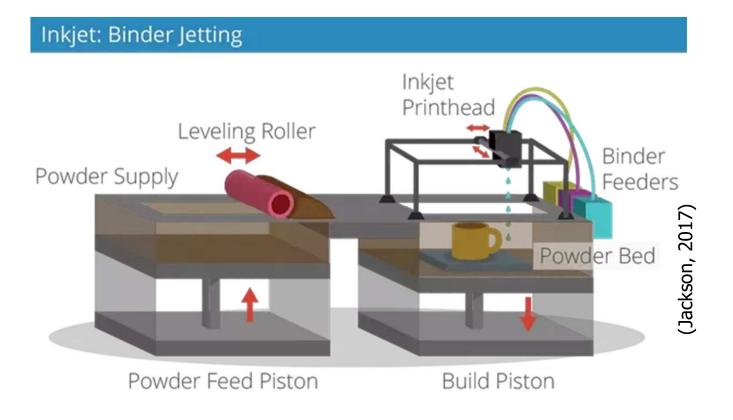
Hollow sphere

Possible: FDM, Reverse SLA

Material trapped inside: SLM and SLA (they would need window for discharging trapped material inside)

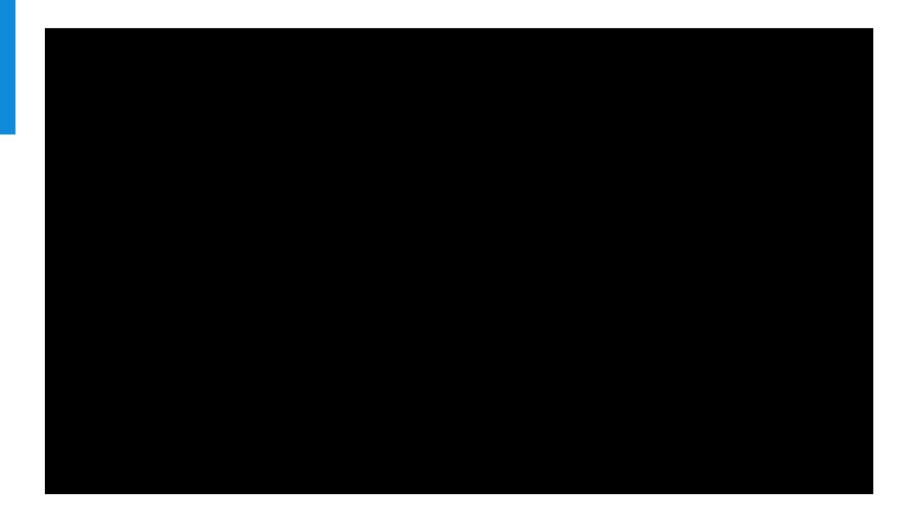
Other geometries?

Reza Hedayati, PhD – rezahedayati@gmail.com

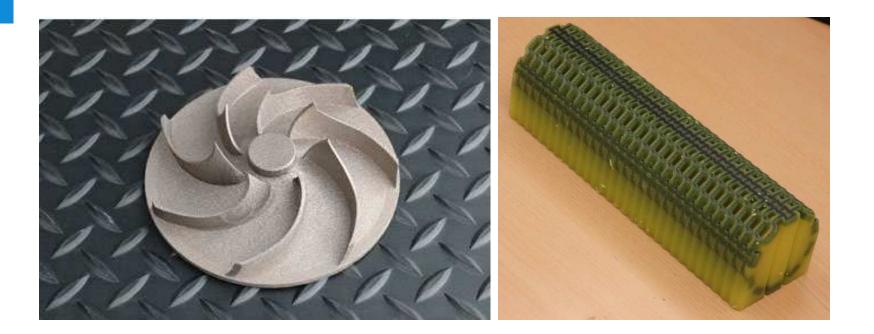

Question

7

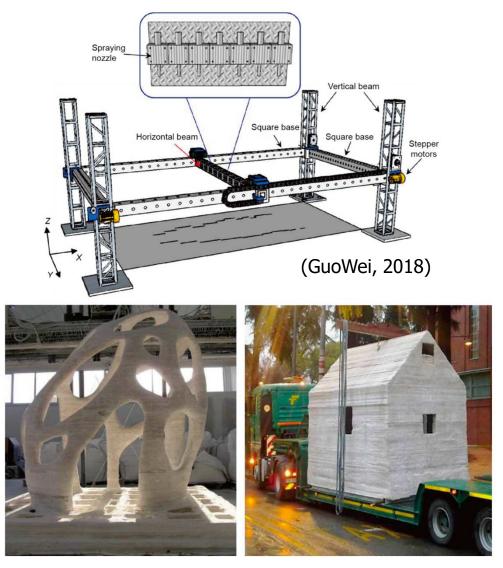
Binder jetting


Binder jetting

A binder is selectively deposited onto the powder bed, bonding these areas together to form a solid part


Binder jetting

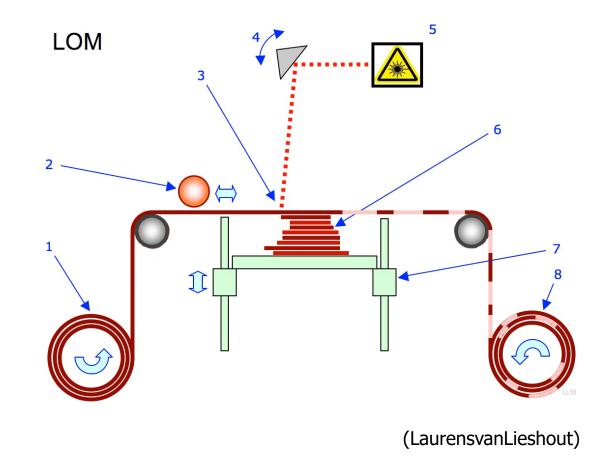
https://www.youtube.com/watch?v=RNNxEoXuvuw



Binder jetting for construction field

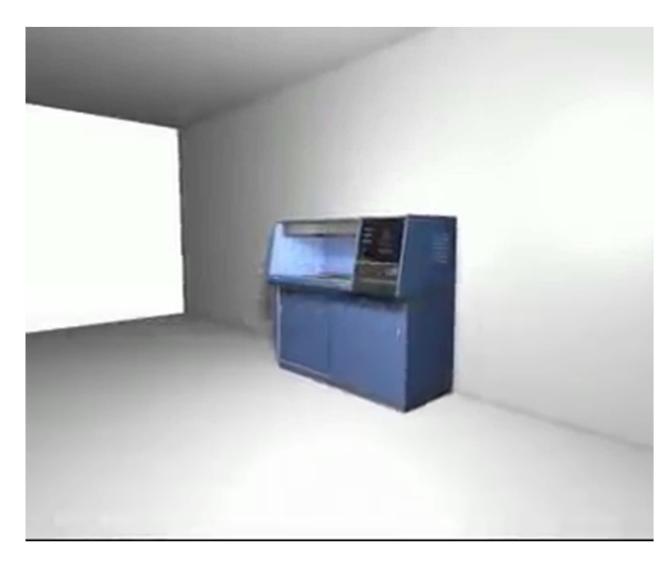
D-shape printer

- Printer head installed with hundreds of spraying nozzles.
- The printer head is connected to the square base by a horizontal beam, which can freely move along X axis. The square base moves upwards (z-axis) through four stepper motors.
- During printing process, spraying nozzles selectively sprays a binding liquid on predefined areas of the sand layer.
- Once a layer has been printed, a horizontal beam also act as powder material spreader prior to subsequent layer deposition



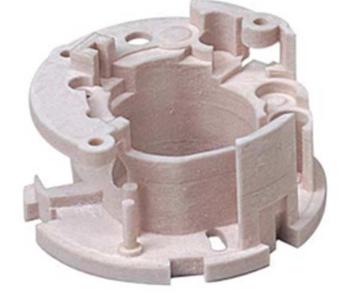
(GuoWei, 2018)

Laminated object processes


Layer laminated manufacturing (LLM)

TUDelft

Layer laminated manufacturing (LLM)

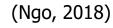


https://www.youtube.com/watch?v=GUvnz0borAI

Layer laminated manufacturing (LLM)

(Inggo.com)

(Gebhardt, 2012)


Detailed comparison of different AM techniques

Detailed comparison of AM techniques

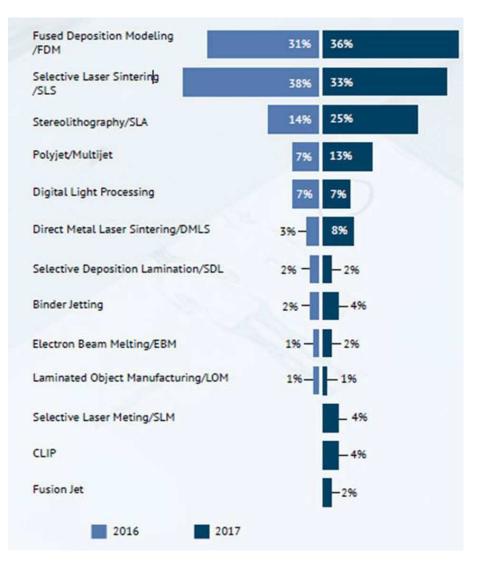
A summary of materials, application, benefits and drawbacks of the main methods of additive manufacturing

Methods	Materials	Applications	Benefits	Drawbacks	Resolution
Fused deposition modelling	 Continuous filaments of thermoplastic polymers Continuous fibre- reinforced polymers 	 Rapid prototyping Toys Advanced composite parts 	Low costHigh speedSimplicity	 Weak mechanical properties Limited materials (only thermoplastics) Layer-by-layer finish 	range (μm) 50-200 μm
Powder bed fusion (SLS, SLM, 3DP)	 Compacted fine powders Metals, alloys and limited polymers (SLS or SLM) ceramic and polymers (3DP) 	 Biomedical Electronics Aerospace Lightweight structures (lattices) Heat exchangers 	Fine resolutionHigh quality	 Slow printing Expensive High porosity in the binder method (3DP) 	80-250 μm
Inkjet printing and contour crafting (binder jetting)	 A concentrated dispersion of particles in a liquid (ink or paste) Ceramic, concrete and soil 	BiomedicalLarge structuresBuildings	Ability to print large structuresQuick printing	 Maintaining workability Coarse resolution Lack of adhesion between layers Layer-by-layer finish 	Inkjet: 5–200 µm Contour crafting: 25–40mm

Reza Hedayati, PhD – rezahedayati@gmail.com

TUDelft

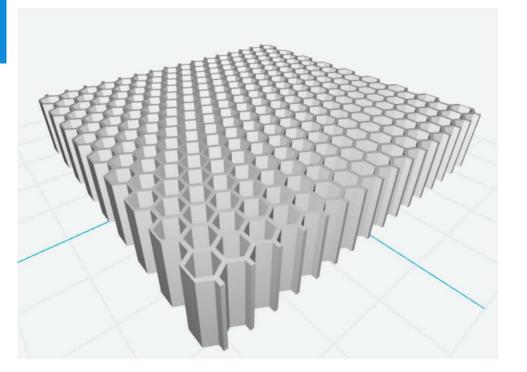
Detailed comparison of AM techniques


A summary of materials, application, benefits and drawbacks of the main methods of additive manufacturing

Methods	Materials	Applications	Benefits	Drawbacks	Resolution range (µm)
Stereolithography	 A resin with photo- active monomers Hybrid polymer- ceramics 	BiomedicalPrototyping	Fine resolutionHigh quality	 Very limited materials Slow printing Expensive 	10 µm
Direct energy deposition	 Metals and alloys in the form of powder or wire Ceramics and polymers 	 Aerospace Retrofitting Repair Cladding Biomedical 	 Reduced manufacturing time and cost Excellent mechanical properties Controlled microstructure Accurate composition control Excellent for repair and retrofitting 	 Low accuracy Low surface quality Need for a dense support structure Limitation in printing complex shapes with fine details 	250 μm
Laminated object manufacturing	 Polymer composites Ceramics Paper Metal-filled tapes Metal rolls 	 Paper manufacturing Foundry industries Electronics Smart structures 	 Reduced tooling and manufacturing time A vast range of materials Low cost Excellent for manufacturing of larger structures 	 Inferior surface quality and dimensional accuracy Limitation in manufacturing of complex shapes 	Depends on the thickness of the laminates

(Ngo, 2018)

Ranking of popularity of AM techniques


https://blogs-images.forbes.com/louiscolumbus/files/2017/05/top-3d-printing-technologies.jpg

Reza Hedayati, PhD – rezahedayati@gmail.com

TUDelft

Comparison of costs

Example:

SLS (Polyamide): 86 €
Stereolithography (Gray
resin): 272 €
SLM (Aluminum): 1066 €

Pricing: Materialise

Dimension: 135 mm x 135 mm x 25 mm

- Bourell, D. L. (2016). Perspectives on additive manufacturing. *Annual Review of Materials Research*, *46*, 1-18.
- Cain, P., "Selecting the optimal shell and infill parameters for FDM 3D Printing", <u>https://www.3dhubs.com/knowledge-base/selecting-optimal-shell-and-infill-parameters-fdm-3d-printing</u>, 2019.
- Formlabs, (2018) "The Ultimate Guide to Stereolithography (SLA) 3D Printing", <u>https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/</u>.
- Gebhardt, A, (2012). Grundlagen, RTejournal Forum f
 ür Rapid Technologie x0, no.
 3.
- Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1, 87-98.
- Grieser, F., "FDM vs SLA 3D Printing Technologies Compared", <u>https://all3dp.com/fdm-vs-sla/</u>, 2018.
- Guo, J., Zhou, Y., Liu, C., Wu, Q., Chen, X., & Lu, J. (2016). Wire arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency. Materials, 9(10), 823.
- Hedayati, R., Leeflang, A. M., & Zadpoor, A. A. (2017). Additively manufactured metallic pentamode meta-materials. *Applied Physics Letters*, *110*(9), 091905.

- Hedayati, R., H. Hosseini-Toudeshky, M. Sadighi, M. Mohammadi-Aghdam, and A. A. Zadpoor. "Multiscale modeling of fatigue crack propagation in additively manufactured porous biomaterials." International Journal of Fatigue 113 (2018): 416-427.
- Hedayati, R., Salami, S. J., Li, Y., Sadighi, M., & Zadpoor, A. A. (2019). Semianalytical Geometry-Property Relationships for Some Generalized Classes of Pentamodelike Additively Manufactured Mechanical Metamaterials. *Physical Review Applied*, *11*(3), 034057.
- Huang, Qianli, Xujie Liu, Xing Yang, Ranran Zhang, Zhijian Shen, and Qingling Feng. "Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications." Frontiers of Materials Science 9, no. 4 (2015): 373-381.
- Jackson, B, (2017) "GE teases details of prototype H1 binder jet 3D printer", <u>https://3dprintingindustry.com/news/ge-teases-details-prototype-h1-binder-jet-3d-printer-126072/</u>
- LaurensvanLieshout, <u>https://commons.wikimedia.org/wiki/File:Laminated_object_manufacturing.png</u>
- Ma, GuoWei, Li Wang, and Yang Ju. "State-of-the-art of 3D printing technology of cementitious material—an emerging technique for construction." *Science China Technological Sciences* 61, no. 4 (2018): 475-495.

- Mohamed, Omar A., Syed H. Masood, and Jahar L. Bhowmik. "Optimization of fused deposition modeling process parameters: a review of current research and future prospects." *Advances in Manufacturing* 3, no. 1 (2015): 42-53.
- Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.
- Shiomi, M., K. Osakada, K. Nakamura, T. Yamashita, and F. Abe. "Residual stress within metallic model made by selective laser melting process." CIRP Annals 53, no. 1 (2004): 195-198.
- Sidambe, Alfred. "Biocompatibility of advanced manufactured titanium implants—A review." *Materials* 7, no. 12 (2014): 8168-8188.
- Sing, S. L., Yeong, W. Y., & Wiria, F. E. (2016). Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. Journal of Alloys and Compounds, 660, 461-470.
- Varotsis, AB, "Introduction to FDM 3D printing", 3DHubs, <u>https://www.3dhubs.com/knowledge-base/introduction-fdm-3d-printing</u>, 2018.
- Varotsis, AB, "Introduction to SLA 3D Printing", 3D Hubs, <u>https://www.3dhubs.com/knowledge-base/introduction-sla-3d-printing</u>, 2018.

- Wohlers, A., Wohlers Report 2017. 3D Printing and Additive Manufacturing State of the Industry. Annual Worldwide Progress Report. 2017: Associates Wohlers. Wohlers Report 2017. Wohlers Associates, Inc.
- Yap, Chor Yen, Chee Kai Chua, Zhi Li Dong, Zhong Hong Liu, Dan Qing Zhang, Loong Ee Loh, and Swee Leong Sing. "Review of selective laser melting: Materials and applications." *Applied physics reviews* 2, no. 4 (2015): 041101.

